

HP Customer Care Dashboard

Version 1.0

MbbQoe Customization Configuration Guide

Edition: 1.1

May 2014

© Copyright 2014 Hewlett-Packard Development Company, L.P.

2

Legal Notices

Warranty

The information contained herein is subject to change without notice. The only
warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be
construed as constituting an additional warranty. HP shall not be liable for technical
or editorial errors or omissions contained herein.

License Requirement and U.S. Government Legend

Confidential computer software. Valid license from HP required for possession, use
or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer
Software, Computer Software Documentation, and Technical Data for Commercial
Items are licensed to the U.S. Government under vendor's standard commercial
license.

Copyright Notices

© Copyright 2014 Hewlett-Packard Development Company, L.P.

Trademark Notices

Adobe®, Acrobat® and PostScript® are trademarks of Adobe Systems Incorporated.

HP-UX Release 10.20 and later and HP-UX Release 11.00 and later (in both 32 and
64-bit configurations) on all HP 9000 computers are Open Group UNIX 95 branded
products.

Java™ is a trademark of Oracle and/or its affiliates.

Microsoft®, Internet Explorer, Windows®, Windows Server 2007®, Windows XP®, and
Windows 7® are either registered trademarks or trademarks of Microsoft
Corporation in the United States and/or other countries.

Firefox® is a registered trademark of the Mozilla Foundation.

Google Chrome® is a trademark of Google Inc.

Oracle® is a registered U.S. trademark of Oracle Corporation, Redwood City,
California.

UNIX® is a registered trademark of The Open Group.

X/Open® is a registered trademark, and the X device is a trademark of X/Open
Company Ltd. in the UK and other countries.

Red Hat® is a registered trademark of the Red Hat Company.

Linux® is a registered trademark of Linus Torvalds in the U.S. and other countries.

3

Contents
Preface .. 5

Chapter 1.. 7

The MBBQoE customization ... 7

1.1 Introduction... 7

Chapter 2.. 9

Datasource configuration .. 9

Chapter 3.. 11

Users and roles ... 11

3.1 MBBQoE user and role ... 11
3.2 Using roles to control the view ... 11
3.3 Using roles to compute KPIs ... 11

Chapter 4.. 13

File structure .. 13

4.1 custom.properties... 13
4.2 configGUIView.xml .. 13
4.2.1 Topbar ... 13
4.2.2 Customer Summary Panel ... 13
4.2.3 MBBQoE panel ... 14
4.2.4 Throughput metrics ... 14
4.2.5 Customer Quality of Experience .. 15
4.2.6 Customer multilevel KPIs .. 16
4.2.7 Using icons in the view .. 16
4.3 Extension.groovy .. 17
4.3.1 Closure definitions... 17
4.3.2 Formatting functions... 17
4.3.3 Computing the experience degradation.. 18
4.4 Config.groovy .. 18
4.4.1 Database connection ... 18
4.4.2 Admin role ... 18
4.4.3 Msisdn to IMSI conversion ... 18
4.4.4 Customer sessions and throughputs .. 19
4.4.5 Most used cell .. 20
4.4.6 Device used .. 21
4.4.7 Sub script execution .. 22
4.4.8 Overall statistics .. 23
4.4.9 Charts and gauges ... 24
4.4.10 Local functions .. 24
4.5 Config_streaming.groovy ... 25
4.5.1 Zstore tables ... 25
4.5.2 Customer query fields ... 25

4

4.5.3 Customer query ... 26
4.5.4 Customer KPI computing ... 27
4.5.5 Location query fields ... 27
4.5.6 Location query ... 28
4.5.7 Location KPI computing... 28
4.5.8 Device query fields .. 28
4.5.9 Device query .. 30
4.5.10 Device KPI computing .. 30
4.5.11 KPI computing ... 30
4.6 Config_filesharing.groovy .. 32
4.7 Config_web_browsing.groovy .. 32
4.8 Config_email.groovy ... 32
4.9 Config_network.groovy .. 33
4.10 Icons .. 35
4.11 Messages ... 35

5

Preface

This guide describes how to configure and customize the Mobile BroadBand Quality
of Experience (MBBQoE) customization of the HP Customer Care Dashboard
product.

Product Name: Customer Care Dashboard MBBQoE customization

Product Version: V1.0

Kit Version: V1.0-01E

Intended Audience

 This Configuration guide is for anyone who is responsible for customizing the
MBBQoE custom.

Software Versions

The term UNIX is used as a generic reference to the operating system, unless
otherwise specified.

The software versions referred to in this document are as follows:

Software Version OS Databases

HP CCD 1.0 Suse SLES

11 SP1 for

x86

machines

SQLite 3.7.2 for

management of

users

HP CEA 4.5 Suse SLES

11 SP1 for

x86

machines

HP CEA Zstore

Table 1 - Software versions

Typographical Conventions

Courier Font:

 Source code and examples of file contents.

 Commands that you enter on the screen.

 Pathnames

 Keyboard key names

Italic Text:

6

 Filenames, programs and parameters.

 The names of other documents referenced in this manual.

Bold Text:

 To introduce new terms and to emphasize important words.

Associated Documents

The following documents contain useful reference information:

 HP CCD V1.0 - MBBQoE Customization - User Guide

 HP CCD V1.0 - Installation Configuration and Administration Guide

 HP CCD V1.0 – Release Notes

 HP CEA 4.5 Release Notes

 HP CEA V4.5 – MBBQoE User Guide

Support

Please visit our HP Software Support Online Web site at
www.hp.com/go/hpsoftwaresupport for contact information, and details about HP
Software products, services, and support.

The Software support area of the Software Web site includes the following:

 Downloadable documentation.

 Troubleshooting information.

 Patches and updates.

 Problem reporting.

 Training information.

 Support program information.

http://www.hp.com/go/hpsoftwaresupport

7

Chapter 1

The MBBQoE customization

1.1 Introduction
An HP CCD customization is composed, at a minimum, of the following three files:

 configGUIView.xml, which describes the dashboard view presented to the
user

 Extension.groovy, which can define global functions used inside the custom.
This file may be empty, but needs to exist.

 Config.groovy, which performs all the computations to provide the KPIs that
will be displayed in the view

In addition to these three files, the MBBQoE custom contains several other files that
will be described in this guide.

Important:

It is important to note that everything in the customization can be modified, even at
run time.

Both the XML view and the groovy script are text files, which can be modified using
any text editor (including vi).

It is possible to modify the view to change an icon, or to change the threshold
values to determine when an indicator displays a red cross or a green check.

It is possible to change the labels by modifying the MessagesBundle.properties
files.

It is possible to change the groovy scripts to change the way QoE scores are
computed (for instance use a weighted average between all services instead of
considering the overall score as the worst of all scores). It is also possible to change
the Zsote queries and the KPIs used in the computations.

Whenever any file from the customization is updated, it is immediately taken into
account at the next request. There is no need to reinstall a new kit, or restart the
server.

All modifications are immediately active.

Warning: always keep a backup copy of all the files before making any
modification.

If you introduce errors in the XML, or in the groovy scripts, the application will no
longer run, or will show an error.
Groovy scripts are pieces of code, compiled and evaluated at run time. If you

8

introduce syntax errors in the code, it will no longer compile. If you introduce bugs,
it will no longer run.

9

Chapter 2

Datasource configuration

The MBBQoE customization uses one datasource to connect to the HP CEA Zstore
database. This datasource is accessed by the following line in Config.groovy:

connect "db", "jdbc/Zstore"

The datasource must have been created in Tomcat by customizing the
/var/opt/CCD/conf/web.xml and /var/opt/CCD/conf/ccd.xml files on the server as
explained in the ‚HP CCD V1.0 - Installation Configuration and Administration
Guide‛

In /var/opt/CCD/conf/web.xml, add the following lines:
 <!-- Zstore Datasource -->

 <resource-ref>

 <description>Zstore Database</description>

 <res-ref-name>jdbc/Zstore</res-ref-name>

 <res-type>javax.sql.DataSource</res-type>

 <res-auth>Container</res-auth>

 </resource-ref>

In Add in /var/opt/CCD/conf/ccd.xml, add the following lines:
 <!-- Zstore Datasource used by the Customer Care

Dashboard for MbbQoe customization -->

 <Resource name=\"jdbc/Zstore\" auth=\"Container\"

type=\"javax.sql.DataSource\"

 driverClassName=\"com.zhilabs.zstore.jdbc.Driver\"

maxActive=\"100\" maxIdle=\"30\" maxWait=\"10000\"

url=\"jdbc:zstore://YOUR_ZSTORE_IP_ADDRESS:1974//m0/zen5/

zstore-frontend\" username=\"YOUR_ZSTORE_USER\"

password=\"YOUR_ZSTORE_USER_PASSWORD\"/>

It is important to use exactly the same string name in web.xml, ccd.xml and
Config.groovy.

Alternatively, you can bypass the Tomcat datasource mechanism, by instantiating
the connection to the Zstore directly in the Config.groovy file, by changing the
‚connect‛ line above with the following line:

connect "db", "jdbc:zstore://

YOUR_ZSTORE_IP_ADDRESS:1974//m0/zen5/zstore-frontend", "

YOUR_ZSTORE_USER ", " YOUR_ZSTORE_USER_PASSWORD "

In both cases, this line establishes a connection to a specific Zstore instance, and
associates it to a variable called ‚db‛.

10

This ‚db‛ will be used in the Config to execute queries:

read db, cmd

If you chose to declare the connection inside Config.groovy, CCD won’t be able to
use the connection pooling mechanism of Tomcat. This means that for every
request, a connection to the Zstore needs to be established, and then released at
the end of every request.

In case the KPIs are spread across multiple Zstores, the customization must be
updated to point each query to the correct database.

In this case, you must declare one ‚connect‛ instruction per Zstore, then modify the
queries accordingly:
connect “db1” “jdbc/Zstore_Kpis_1”

connect “db2” “jdbc/Zstore_Kpis_2”

….

read db1, cmd

…

read db2, cmd

11

Chapter 3

Users and roles

3.1 MBBQoE user and role
Access to CCD customs can be restricted or customized based on user roles.

By default, CCD creates a role named ‚admin‛, and a user called ‚admin‛, which has
the role ‚admin‛. Any user having the ‚admin‛ role can access any custom.

When the MBBQoE customization is installed, it creates a role ‚role_mbbqoe‛ which
can run the mbbqoe custom, and a user called ‚user_mbbqoe‛, which has the
‚role_mbbqoe‛.

When using the ccd_admin tool to register new users, ensure that they have the
‚role_mbbqoe‛ role.

3.2 Using roles to control the view
The file configGUIView.xml controls the view that will be presented to the user. It is
composed of XML tags like <column> or <widget> which control how the view is
built.

It is possible to include an attribute ‚role=<some role>‛ to restrict an element to
the users who have the specified role.

In the MBBQoE custom, this feature is used to restrict the display of the detailed KPI
view only to users with the admin role.

This is done through instructions like this one:

<widget role="admin" indicator="customer-filesharing-

service-nonaccessibility"

title="FileSharing_Service_NonAccessibility"

width="400px" height="45px" type="Info"/>

User_mbbqoe which does not have the admin role will not see this widget, or any
child widget that might be declared within this element.

It is possible to restrict an element to multiple roles, by using a comma separated
list (e.g. <widget role=‛role1,role2‛ …>)

3.3 Using roles to compute KPIs
Roles can also be used to control the KPIs computed, or the format of the indicators
returned from within Config.groovy, by using the keyword ‚hasRole‛:

if (hasRole(“admin”) {

…. Do something

}

12

else

{

…. Do something else

}

Note that each use of the ‚hasRole‛ keyword will trigger a call to the authorization
service, so it is recommended to use a global variable if you need to adjust your
customization based on a specific role:

isAdmin = (hasRole("admin"));

In the MBBQoE custom, we use this feature to only display the QoE scores for users
who have the admin role:

if (isAdmin) {

 kpi "customer-data-overall", customer_dataOverall,

printPercent(customer_dataOverall)

}

else {

 kpi "customer-data-overall", customer_dataOverall

}

13

Chapter 4

File structure

The MBBQoE customization kit is composed of several files, organized in three
subfolders, under resources:

 config: contains the XML view file and the groovy files.

 properties: contains the properties files used to localize the dashboard view

 icons: images, icons used in the dashboard view

4.1 custom.properties
This small file contains the name and version of the customization.
name=mbbqoe

version=V1.0

The name matches the url parameter used to access the customization
(custom=mbbqoe)

4.2 configGUIView.xml
<gui xmlns:xsi="http://www.w3.org/2001/XMLSchema-

instance"

xsi:noNamespaceSchemaLocation="configGUIView.xsd"

class="first-level-customer-care" title="First Level

Customer Care">

This is the top tag of the page

4.2.1 Topbar
<topbar></topbar>

Placeholder for customization launch links. <launch> tags can be added here

4.2.2 Customer Summary Panel
<row class="panel vert-align large">

 <row class="left" style="width:680px;">

 <widget width="220px" height="45px"

type="Info" icon="resources/HP_exp-live/img/icons/HP

Blue/performance.png" title="Customer"

indicator="customer"/>

 <widget width="220px" height="45px"

type="Info" title = "Location" indicator="location"/>

 <widget width="220px" height="45px"

type="Info" title= "Device" indicator="device"/>

</row>

 <row class="right">

 <widget indicator="apn" title="APN"

width="280px" height="45px" type="InfoList"

14

icon="resources/HP_exp-live/img/icons/HP

Blue/graph_72.png"/>

 </row>

</row>

This is the Customer Summary Panel, composed of 4 widgets. The two <row>
subtags are used to align the widgets either on the left, or right side of the screen.

Reminder: there are different kinds of widgets. The most important attribute is
‚indicator‛ which is used to link the widget on the screen, with the KPI computed in
Config.groovy. The type attribute can take different values: Info (displays a value),
InfoList (displays multiple values in a drop down box), ThresholdIndicator (displays
a value with a colored icon indicating OK, KO or Warning), BarChart or Gauge (for
graphs)

4.2.3 MBBQoE panel
 <row>

 <column class="panel" width="42" height="42">

 <!-- ==

 ============= Customer indicators =============

 === -->

…

 </column>

 <column class="panel middle" >

 <!-- ==

 ============= Location indicators =============

 === -->

 …

</column>

 <column class="panel right">

 <!-- ==

 ============= Device indicators =============

 === -->

…

 </column>

 </row>

The next row is used to organize the next panel in three columns, the customer’s
KPIs on the left, the Location’s KPIs in the middle, and the Device’s KPIs on the right.

See below for more details on how each of these columns is organized.

4.2.4 Throughput metrics
 <row class="panel large vert-align">

 <widget width="110px" height="105px" type="Gauge"

title="SubscriberSummaryAvgThroughputDown" min="0" max="43008"

unit="kbps" indicator="throughput_avg_down"/>

 <widget width="110px" height="105px" type="Gauge"

title="SubscriberSummaryAvgThroughputUp" min="0" max="11264"

unit="kbps" indicator="throughput_avg_up"/>

 <widget width="110px" height="105px" type="Gauge"

title="SubscriberSummaryPeakThroughputDown" min="0"

max="43008" unit="kbps" indicator="throughput_max_down"/>

 <widget width="110px" height="105px" type="Gauge"

title="SubscriberSummaryPeakThroughputUp" min="0" max="11264"

unit="kbps" indicator="throughput_max_up"/>

 <column class="right">

 <widget width="200px" height="45px"

type="Info" icon="resources/HP_exp-live/img/icons/arrow

up.png" title="SubscriberTotalVolumeUp"

indicator="total_volume_up"/>

15

 <widget width="200px" height="45px"

type="Info" icon="resources/HP_exp-live/img/icons/arrow

down.png" title="SubscriberTotalVolumeDown"

indicator="total_volume_down"/>

 </column>

 </row>

This panel shows the customer’s upload and download throughput, in the form a 4
gauge charts. Each gauge has a max value configured to the theoretical limit of 3G
HSDPA (42 Mb for download, 11 Mb for upload).
It is possible to customize the max attribute of the widget, to put values closest to
the real experience that we can expect for the users.

The panel also contains two information widgets showing the total volume of
upload and download for the user.

4.2.5 Customer Quality of Experience
<widget width="300px" height="45px"

type="ThresholdIndicator" icon="resources/HP_exp-

live/img/icons/HP Blue/user_48.png" title="Customer_QoE"

indicator="customer-overall-status" threshold-inf="50.0"

threshold-sup="70.0"/>

This first widget definition corresponds to the global Customer Quality of
experience. It has several attributes that determine how it is rendered:

 width, height: determines the size of the panel in the screen

 icon: the image displayed on the left side of the panel (see below for more
details on the icons path).

 title: the string is used as a key in the properties file
MessagesBundle_en.properties. If the key is found, then the widget’s title
will be replaced by the value in the properties file. If the key does not exist,
then the title of the widget will be the value of the title attribute.

If the user has specified a locale other than English, and there is a file
MessagesBundle_<locale>.properties, then the key will be looked-up into
the localized file.

In MessagesBundle_en.properties:
Customer_QoE = Customer's QoE

In MessagesBundle_fr.properties:
Customer_QoE = QdE Utilisateur

 indicator: the name of KPI indicator to display. This indicator will be
computed during execution of the Config.groovy file.

 type: ThresholdIndicator means that the indicator will be displayed with an
icon either green (status OK), yellow (warning) or red (status is bad). The
icon displayed depends on the indicator’s score, and the two following
thresholds.

 threshold-inf, threshold-sup: Two values that determine which icon will be
used to show the quality score. If the indicator value is lower than
threshold-inf (here 50%), then the ‚Red cross‛ icon will be used.
If the indicator value is greater than threshold-sup (70%), then the ‚green

16

check‛ icon will be used. If the value is between these two thresholds,
then the ‚yellow warning‛ icon will be used.

4.2.6 Customer multilevel KPIs
<widget indicator="location-streaming"

title="Streaming_QoE_Score" …>

 <widget indicator="location-streaming-acc"

title="Streaming_Accessibility" …>

 <widget role="admin" indicator="location-

streaming-repro-start-failure-ratio" …/>

 <widget role="admin" indicator="location-

streaming-service-nonaccessibility" … />

 </widget>

 <widget indicator="location-streaming-retain"

title="Streaming_Retainability" … >

 <widget role="admin" indicator="location-

streaming-rebuff-failure-ratio"… />

 <widget role="admin" indicator="location-

streaming-repro-cutoff-ratio" … />

 </widget>

 <widget indicator="location-streaming-qual" …>

 <widget role="admin" indicator="location-

streaming-rebuff-time-pct" … />

 <widget role="admin" indicator="location-

streaming-time-to-stream-start"… />

 </widget>

</widget>

This (simplified) code snippet show the three-level widget panel used to display the
scores for each service, then per category.

The first <widget> on top corresponds to the Streaming service. Within the
<widget> element, we can find three other <widget> elements, corresponding to
the categories ‚Accessibility‛, ‚Retainability‛ and ‚Quality‛.

Because the <widget> elements are declared inside the parent’s <widget> element
(between the <widget> and </widget> tags), and not alongside the parent, they will
be automatically displayed in a sub-panel, when the user clicks on the parent. An
arrow is displayed to let the user know that more detail is available.

Inside the ‚Accessibility‛ widget, there are two more <widget> defined,
corresponding to the detailed KPIs used to compute the quality score.

These widgets have the attribute role=‛admin‛, which means that only a user with
the admin role would see these widgets. For any other user, it is as if these
elements did not exist.

4.2.7 Using icons in the view

Each <widget> can have an ‚icon‛ attribute , containing the relative path to an
image file.

HP CCD provides a number of predefined icons from the HP Experience Live library.

This icon can be referenced via the path ‚resources/HP_exp-live‛:
icon="resources/HP_exp-live/img/icons/arrow up.png"

You can also reference icons included inside the MBBQoE customization, in the
folder resources/icons.

17

To reference these icons, the path to use is ‚resources/mbbqoe/‛ (where mbbqoe is
the name of the deployed customization):
icon="resources/mbbqoe/File_Sharing_sharing_RGB_gray_48.p

ng"

4.3 Extension.groovy
This file is used to extend the DSL language, by creating new keywords, or it can
also be used to define global variable or global functions used in the execution of
Config.groovy.

It is possible to create functions in Config.groovy, however, these functions can
only be used inside the file where they are created. For global functions,
Extension.groovy must be used.

4.3.1 Closure definitions
degradation = {Double value, Double threshold ->

computeDegradation(value, threshold, 0,

DEGRADATION_DEFAULT)}

printPercent = {Double value -> printPercent(value)}

printKbps = {Double value -> printKbps(value)}

printKbytes = {Double bytes -> printKbytes(bytes)}

printMbytes = {Double bytes -> printMbytes(bytes)}

printSeconds = {Double value -> printSeconds(value)}

nonnull = {Double value -> nonnull(value)}

displayKpiDegradationPct = {Double value, Double

threshold -> displayKpiDegradationPct(value, threshold)}

displayKpiDegradationSeconds = {Double value, Double

threshold -> displayKpiDegradationSeconds(value,

threshold)}

In order to access a function created in Extension.groovy from the Config.groovy
file, it must be declared as a closure, in the form

<keyword> = { <input parameters> -> <function name>(parameters) }

4.3.2 Formatting functions

The following functions are provided to provide a consistent way to display QoE
scores:

 printPercent: displays the value rounded to the nearest integer, with a %
sign

 printKbps: Displays a value (containing bps) as kbps

 printKbytes: Displays a value (containing bytes) as kb

 printMbytes: Displays a value (containing bytes) as Mb

 printSeconds: Displays a value (containing ms) as seconds

 nonnull: converts null values to 0

 displayKpiDegradationPct: displays a string showing the KPI score, the
threshold (in percentage), and the computed degradation based on this
threshold (e.g.: 1 % (threshold:5 %) Service

Degradation:1 % QoE:99 %)

 displayKpiDegradationSeconds: displays a string showing the KPI score, the
threshold (in seconds), and the computed degradation based on this

18

threshold (e.g: 0.0 s (threshold:0.5 s) Service

Degradation:0 % QoE:100 %)

4.3.3 Computing the experience degradation

The computeDegradation function determines the performance degradation of a
service, by comparing the KPI value to a predefined threshold.

 At 50% of the value of the threshold, there is a degradation factor already of
25% (QoE Score)

 At 100% of threshold, the degradation factor is of 50%

 Between 100% of the threshold and 200% of the threshold, the degradation
evolves from 50% to 75%

 Between 200% of the threshold and 400% of the threshold, the degradation
varies from 75% to 100%

 When the value goes beyond 400% of the threshold, the degradation is
100%

 For values between 0% and 50% of the threshold, the degradation factor will
vary from 0% to 25%. However, this degradation is not linear. Instead, we
use a formula based on Arctangent which will give a lower degradation
factor for values closest to 0%, and higher degradation as values reach
closer to 50% (lower and higher compared to what a linear formula would
return).

4.4 Config.groovy

4.4.1 Database connection
connect "db", "jdbc/Zstore"

This line assigns to variable ‚db‛ the datasource connection named ‚jdbc/Zstore‛
(which must be configured in Tomcat).

‚db‛ will be used in all subsequent queries, to read data from the Zstore

4.4.2 Admin role
isAdmin = (hasRole("admin"));

Calls the ‚hasRole‛ service, to determine if the user has the ‚admin‛ role. The
Boolean result is assigned to variable ‚isAdmin‛.

It is important to note here that ‚isAdmin‛ is not defined through a ‚def isAdmin‛
command.

When declaring a variable with ‚def‛, you create a local variable, usable only in the
context of the script (here Config.groovy). However, when the variable is created
without the ‚def‛ keyword, it becomes a global variable, usable during the whole
execution, both of the current script, and all sub-scripts.

In this case, we want the ‚isAdmin‛ Boolean to be usable in all the groovy subscripts
called by Config.groovy, which is the reason why ‚def‛ is not used.

4.4.3 Msisdn to IMSI conversion
1. read db, concat("SELECT FIELD:BEARER.IMSI FROM

index.msisdn-imsi-index WHERE BEARER.MSISDN = '",

escapeString(customerId), "'")

2. def imsi = getVariable("field:bearer.imsi")

19

3. if (imsi != null && imsi.size() > 0 && imsi[0] !=
null)

4. {
log.debug(concat("MSISDN [", customerId, "] -

> IMSI [", imsi[0], "]"));

customerId = imsi[0]

5. }

6. info "customer", customerId

Line [1] executes a direct query to the Zstore. The user has entered a value in the
customerId field, and we need to determine if this value is an MSISDN, or an IMSI,

The query searches for all records in table ‚index.msisdn-imsi-index‛ if there is an
MSISDN equal to the provided id.

Line [2]: when executing a query to the Zstore for field X, the resulting recordset
will be returned in a variable that can be accessed via the instruction
‚getVariable(‘x’)‛. It is important to note that even if the Select statement can use
any casing for the field name (here FIELD:BEARER.IMSI in all uppercase), the
variable MUST use the same name in all lowercase to access the variable (here
field:bearer.imsi).

Line [3-7]: All queries return a list of records (for 0 to n), so all field variables are
returned as arrays of size 0 to n.
In this query, we expect the MSISDN to IMSI query to return either 0 or 1 record. So if
we have more than 0 record, then we know that the provided id is a MSISDN, so we
assign to the global customerId variable the corresponding IMSI (line [6]).

If the query did not return any record, then we keep the customerId has it was
provided by the user.

Line [8]: info is a keyword used assign a text string to a widget in the view. Here, we
assign the customerId value (the IMSI) to the widget called ‚customer‛ in
configGUIView.xml. The result will be:

<widget width="220px"

height="45px" type="Info"

icon="resources/HP_exp-

live/img/icons/HP

Blue/performance.png"

title="Customer"

indicator="customer"/>

4.4.4 Customer sessions and throughputs
1. read (db, "index.correlator-grid", sql_olap_dimension,

 "FIELD:BEARER.APN", "FIELD:BEARER.CELL",

 "field:location.mcc", "field:location.mnc",

"field:location.lac", "field:location.sac",

"field:bearer.imeisv", "field:bearer.summary-average-

throughput-down", "field:bearer.summary-average-throughput-

up", "field:bearer.summary-throughput-down",

"field:bearer.summary-throughput-up", "field:bearer.total-

volume-up", "field:bearer.total-volume-down")

2. def apn = simplify(getVariable("field:bearer.apn"))
3. info "apn", listToInfoListDisplay(apn)

4. // Unit is bps for throughput indicators, bytes for volume
5. def subscriberSummaryAvgThroughputDown =

nonnull(avg(getVariable("field:bearer.summary-average-

throughput-down")))

20

6. def subscriberSummaryAvgThroughputUp =
nonnull(avg(getVariable("field:bearer.summary-average-

throughput-up")))

7. def subscriberSummaryPeakThroughputDown =
nonnull(max(getVariable("field:bearer.summary-throughput-

down")))

8. def subscriberSummaryPeakThroughputUp =
nonnull(max(getVariable("field:bearer.summary-throughput-

up")))

9. def subscriberTotalVolumeDown =
nonnull(sum(getVariable("field:bearer.total-volume-down")))

10. def subscriberTotalVolumeUp =

nonnull(sum(getVariable("field:bearer.total-volume-up")))

[1]. In the previous paragraph, we saw that the ‚read‛ command could have the
syntax ‚read db, cmd‛, to execute any command to the database.
The other syntax of the ‚read‛ command is used here:

read db, table, field1, …, fieldn

When using this syntax, a Zstore query is built to return fields 1-n from the
specified table, for all records in the selected time period, and for the specified
customerId. In Zstore syntax, there is a ‚RANGE KEYJOIN‛ criteria added to the
query. This is hidden from view to make this script easier to read.

So here, this query will return a number of fields for all records from the
index.correlator-grid table for the range period considered.

[2-3]. As seen previously, each field returned by the query can be obtained with the
getVariable function, as an array of values. The simplify keyword will remove from
the array all duplicate values, and we use the info keyword to assign the list of APN
values to the display widget.

The APN widget is an InfoList, which means that it can display multiple values in a
drop down (listToInfoListDisplay is a function that converts an array of values to
the correct format to be displayed in an InfoList)

<widget indicator="apn"

title="APN"

width="280px"

height="45px"

type="InfoList"

icon="resources/HP_exp-

live/img/icons/HP

Blue/graph_72.png"/>

[5-10]: The query may have returned multiple records, one per every session for
the customer during the time period. For each of these sessions, we have retrieved
information corresponding to the average and max throughput during the session,
as well as the total volume up/downloaded during the session.

In order to display these indicators for the whole period, the script uses the
keywords ‚sum‛, ‚avg‛ or ‚max‛ to compute the total, max or average throughputs
for the user during the whole period.

4.4.5 Most used cell

1. def cell = most(getVariable("field:bearer.cell"))
2. def locations = buildLocationString()

21

3. def location = most(locations);

4. cellId = null; // cellID need to be defined as a global
variable

5. def locationDisplay = "";
6. if (location != null)
7. {
8. def cmd = concat("SELECT INDEX:LOCATION.COORDS FROM

index.mcc-mnc-lac-sac-cid-location-index ", " WHERE

LOCATION.MCC-MNC-LAC-SAC-CID = '", escapeString(location),

"'")

9. read db, cmd
10. def coords = getVariable("index:location.coords");

11. log.debug(cmd + " --> " + coords);

12. def coord = most(coords);

13. cellId = getCellIdFromCoords(coord);

14. locationDisplay = getLocationDisplayString(coord,

cellId);

15. }

16. info "location", locationDisplay

[1-3] we have a number of records corresponding to all the sessions of the user
during the time period. Each of these sessions is linked to one cell. To get the id of
the most used cell, we need to build the unique key corresponding to a location.
This key is a composite string built from multiple fields, mcc, mnc, lac and sac. The
function ‚buildLocationString‛ generates these compositie keys.

The ‚most‛ keyword will return the value that appears most in the list of values. In
this case, this is the key of the cell that was used during the most number of
sessions.

[8-12] Execute a query on table index.mcc-mnc-lac-sac-cid-location-index to get
the location coordinates for the most used cell (based on the mcc-mnc-lac-sac key).

If the query returns a value, it will be in the form ‚<town>|||<cellid>;<coordinates>‛
(e.g. Chaco|||VHE002;-27.425862;-59.031322;5)

[13] The cellId is the key that must be used as a RangeKeyJoin is all the Zstore ‚cell‛
tables. It is the element of the coordinates string between ||| and ;

This id is stored in variable ‚cellId‛. Note again that this variable is not declared with
‚def‛, as it needs to be global to be used in the sub-scripts.

[14, 16] Builds the location display string that will be assigned to the view widget.
The function takes into account the user’s role and only shows the town for admin
users

4.4.6 Device used
1. def imeisv = most(getVariable("field:bearer.imeisv"))
2. def tac = (imeisv == null ? null : imeisv.substring(0, 8))

3. def deviceModel = null;
4. def deviceBrand = null;
5. def deviceOS = null;
6. def deviceOSVersion = null;
7. deviceBMO = null; // deviceBMO need to be defined as a global

variable

8. if (tac != null)
9. {

22

10. def cmd = concat("SELECT FIELD:DEVICE.MODEL,

FIELD:DEVICE.BRAND, FIELD:DEVICE.OS, FIELD:DEVICE.OS-VERSION",

" FROM index.imei-index WHERE imei.tac = '", escapeString(tac)

+ "'")

11. read db, cmd

12. deviceModel =

noquotes(most(getVariable("field:device.model")))

13. deviceBrand =

noquotes(most(getVariable("field:device.brand")))

14. deviceOS = noquotes(most(getVariable("field:device.os")))

15. deviceOSVersion =

noquotes(most(getVariable("field:device.os-version")))

16. deviceBMO = concat(deviceBrand, "|||", deviceModel,

"|||", deviceOS)

17. }

18. def deviceDisplay = getDeviceDisplayString(deviceModel,

deviceBMO, deviceBrand, deviceOS, deviceOSVersion)

19. info "device", deviceDisplay

[1-2] From the list of all user sessions, we obtain the list of all ‚imeisv‛ used by the
customer, we select the ‚most used‛, and from this imeisv, we extract the tac
number, which is the first 8 characters of the imeisv.

[10-16] This ‚tac‛ is used as a key to query table index.imei-index, and get back the
device brand, model and OS. These three fields are concatenated in a single string
called DeviceBMO, which will be used as the key to get all KPIs in the ‚device‛ tables
of the Zstore.

Again, deviceBMO is not declared with ‚def‛ to make it global.

4.4.7 Sub script execution
1. //------------------- Web Browsing Kpis -----------------
2. customer_web_qoe = null
3. location_web_qoe = null;
4. device_web_qoe = null;
5. evaluate "Config_web_browsing.groovy"
6. //---------- end of Web Browsing Kpis -------------------

7. //------------------- Streaming Kpis --------------------
8. customer_streaming_qoe = null
9. location_streaming_qoe = null;
10. device_streaming_qoe = null;

11. evaluate "Config_streaming.groovy"

12. //----------- end of Streaming Kpis ---------------------

13. //---------------- FileSharing Kpis ---------------------

14. customer_filesharing_qoe = null

15. location_filesharing_qoe = null;

16. device_filesharing_qoe = null;

17. evaluate "Config_filesharing.groovy"

18. //-------------- end of FileSharing Kpis ----------------

19. //----------------- Email Kpis ---------------------

20. customer_email_qoe = null

21. location_email_qoe = null;

22. device_email_qoe = null;

23. evaluate "Config_email.groovy"

24. //--------------- end of Email Kpis ---------------------

25. //------------------- Network Kpis ---------------------

23

26. log.debug("%%%%%%%%%%%% Evaluate Config_network ")

27. customer_network_qoe = null;

28. location_network_qoe = null;

29. device_network_qoe = null;

30. evaluate "Config_network.groovy"

31. //--------------- end of Network Kpis -------------------

For readability and maintainability, the main KPI computations have been split into
multiple sub-scripts.

[1-6] The ‚evaluate‛ keyword triggers the execution of a Groovy script, here
Config_web_browsing.groovy‛. This subscript will be executed in its own context,
without having access to the variables defined in Config.groovy.

The subscript will only be able to access global functions (declared in
Extension.groovy), and global variables (declared in Config.groovy without the def
keyword).

The subscript will compute many KPIs and update the associated widgets. However,
there are 3 qoe scores that will be used in the Config.groovy script to compute the
overall Qoe score. This is the reason why customer_web_qoe, location_web_qoe
and device_web_qoe are initialized (to null) in this script. To make these variables
global, so they can be updated in a subscript, while being also available in the main
parent script.

[7-12]. same principle. Calls a subscript to compute all the streaming KPIs

[13-18]. same principle. Calls a subscript to compute all the file-sharing KPIs

[19-24]. same principle. Calls a subscript to compute all the email KPIs

[25-31. same principle. Calls a subscript to compute all the network KPIs

4.4.8 Overall statistics
1. def customer_dataOverall = min(customer_streaming_qoe,

customer_filesharing_qoe, customer_web_qoe, customer_email_qoe)

2. def location_dataOverall = min(location_streaming_qoe,
location_filesharing_qoe, location_web_qoe, location_email_qoe)

3. def device_dataOverall = min(device_streaming_qoe,
device_filesharing_qoe, device_web_qoe, device_email_qoe)

4. if (isAdmin) {
kpi "customer-data-overall", customer_dataOverall,

printPercent(customer_dataOverall)

kpi "location-data-overall", location_dataOverall,

printPercent(location_dataOverall)

kpi "device-data-overall", device_dataOverall,

printPercent(device_dataOverall)

5. }
6. else {

kpi "customer-data-overall", customer_dataOverall

kpi "location-data-overall", location_dataOverall

kpi "device-data-overall", device_dataOverall

7. }

8. /**
9. * Total QoE Score % Min (Data Services QoE Score, Network

QoE Score)

10. */

11. def customer_overall = overallMin ([customer_dataOverall,

customer_network_qoe])

12. def location_overall = overallMin ([location_dataOverall,

location_network_qoe])

24

13. def device_overall = overallMin ([device_dataOverall,

device_network_qoe])

14. if (isAdmin) {

kpi "customer-overall-status", customer_overall,

printPercent(customer_overall)

kpi "location-overall-status", location_overall,

printPercent(location_overall)

kpi "device-overall-status", device_overall,

printPercent(device_overall)

15. }

16. else

17. {

kpi "customer-overall-status", customer_overall

kpi "location-overall-status", location_overall

kpi "device-overall-status", device_overall

18. }

[1] computes the customer’s Data Services Overall Qoe, which is the minimum
between customer’s streaming, web browsing, file sharing and email QoEs.

[2-3] same as above, for the location’s and device’s Data Services Overall QoE.

[4-7] the QoE scores are assigned to the KPIs, so that the widget displays the right
icon, based on the score. If the user has the admin role (line [4]), then in addition to
setting the KPI value, we add a label to the KPI showing the score as a percentage. If
the user does not have the admin role (line [6]), the percentage won’t be displayed.

[10-18] The Overall QoE scores are computed for customer, location and device.
The overall score is the min between the Data Service Overall QoE, and the network
QoE.

4.4.9 Charts and gauges
1. // convert throughput from bps to kbps and volume from bytes to Mb
2. kpi "throughput_avg_down", subscriberSummaryAvgThroughputDown /

1024

3. kpi "throughput_avg_up", subscriberSummaryAvgThroughputUp / 1024
4. kpi "throughput_max_up", subscriberSummaryPeakThroughputUp / 1024
5. kpi "throughput_max_down", subscriberSummaryPeakThroughputDown /

1024

6. info "total_volume_down", printMbytes(subscriberTotalVolumeDown)
7. info "total_volume_up", printMbytes(subscriberTotalVolumeUp)

This code assigns the upload/download throughput values to their respective KPIs,
so they can be rendered.

The difference between keywords kpi and info, is that kpi assigns a value that the
widget will have to render (in this case, the values are rendered in gauge charts).

On the other hand, info sets a text string, that will typically be rendered in an Info
widget.

4.4.10 Local functions

 Config.groovy contains a number of functions that are used in the processing.
These functions are defined in this file, and not in Extension.groovy because they
are exclusively used by the Config.groovy script, so they don’t need to be global.

 escapeString: escapes quotes from any parameter used in queries to prevent
SQL injection

 buildLocationString: builds location strings based on mcc-mnc-sac-lac

25

 getCellIdFromCoords: extracts the cellId from a coordinates string

 getTownFromCoords: extracts the town from a coordinates string

 getLocationDisplayString: determines the format of the location to display,
based on the user’s role

 getDeviceDisplayString: determines the format of the device info to display

 listToInfoListDisplay: converts an array of values, into a string that can be
rendered by an InfoList widget

 overallMin: computes the minimum of a list of values, without failing is some
values are null.

4.5 Config_streaming.groovy
This script contains all the queries and computations used to determine the
streaming KPIs, and update the widgets.

The formulas to determine QoE scores per KPI and per service are the same for the
customer, the location and the device. The difference lies in the table and field
names to query to retrieve customer data, location data, or device data.

This is why the first section of the script builds a query to retrieve data from the
customer data, then calls a procedure to compute the customer KPIs.

This same procedure is called again to compute the location KPIs after we have
built another query to get location data, and finally a third time with the device
data.

4.5.1 Zstore tables
def subscriberStreamingTable = "report.gn_pdu_streaming-

subscriber-900-timeline"

def locationStreamingTable = "report.gn_pdu_streaming-cell-

900-timeline"

def deviceStreamingTable ="report.gn_pdu_streaming-

brand_model_os-900-timeline"

These are the tables containing the KPI data for customer, location and device.

4.5.2 Customer query fields
// Customer KPIs

def sql_st_cutoff = "[min(100,

100*safediv((1*#{gn_pdu_streaming-subscriber-900-timeline-

common.count-streaming-failure-count-3:gn_pdu_streaming-

subscriber-900-timeline-common.count-streaming-failure-count-

3}),1*#{gn_pdu_streaming-subscriber-900-timeline-common.count-

streaming-session-count-2:gn_pdu_streaming-subscriber-900-

timeline-common.count-streaming-session-count-2}, 1))] as

streaming_Repro_Cutoff_Ratio"

def sql_st_failure = "[min(100,

100*safediv((1*#{gn_pdu_streaming-subscriber-900-timeline-

streaming_rebuffering_failure_ratio.count-streaming-failure-

count-1:gn_pdu_streaming-subscriber-900-timeline-

streaming_rebuffering_failure_ratio.count-streaming-failure-

count-1}), 1*#{gn_pdu_streaming-subscriber-900-timeline-

common.count-streaming-session-count-2:gn_pdu_streaming-

subscriber-900-timeline-common.count-streaming-session-count-

2}, 1))] as streaming_Rebuff_Failure_Ratio"

def sql_st_timepct = "[safediv(100*(#{gn_pdu_streaming-

subscriber-900-timeline-common.average-tcp-rebuffering-time-

26

1:gn_pdu_streaming-subscriber-900-timeline-common.average-tcp-

rebuffering-time-1}),#{gn_pdu_streaming-subscriber-900-

timeline-streaming_rebuffering_time_percentage.average-stream-

duration-1:gn_pdu_streaming-subscriber-900-timeline-

streaming_rebuffering_time_percentage.average-stream-duration-

1})] as streaming_Rebuff_Time_Pct"

def sql_st_startfail = "[min(100,

100*safediv((1*#{gn_pdu_streaming-subscriber-900-timeline-

streaming_reproduction_start_failure_ratio.count-streaming-

failure-count-1:gn_pdu_streaming-subscriber-900-timeline-

streaming_reproduction_start_failure_ratio.count-streaming-

failure-count-1}+1*#{gn_pdu_streaming-subscriber-900-timeline-

streaming_reproduction_start_failure_ratio.count-streaming-

failure-count-2:gn_pdu_streaming-subscriber-900-timeline-

streaming_reproduction_start_failure_ratio.count-streaming-

failure-count-2}+1*#{gn_pdu_streaming-subscriber-900-timeline-

streaming_reproduction_start_failure_ratio.count-streaming-

failure-count-3:gn_pdu_streaming-subscriber-900-timeline-

streaming_reproduction_start_failure_ratio.count-streaming-

failure-count-3}),1*#{gn_pdu_streaming-subscriber-900-

timeline-common.count-streaming-session-count-

1:gn_pdu_streaming-subscriber-900-timeline-common.count-

streaming-session-count-1}, 1))] as

streaming_Repro_Start_Failure"

def sql_st_nonacc = "[min(100,

100*safediv(1*#{gn_pdu_streaming-subscriber-900-timeline-

common.count-streaming-failure-count-3:gn_pdu_streaming-

subscriber-900-timeline-common.count-streaming-failure-count-

3},1*#{gn_pdu_streaming-subscriber-900-timeline-common.count-

streaming-session-count-1:gn_pdu_streaming-subscriber-900-

timeline-common.count-streaming-session-count-1}, 1))] as

streaming_Service_Non_Acc"

def sql_st_timetostart = "[#{gn_pdu_streaming-subscriber-900-

timeline-common.average-tcp-service-start-time-

3:gn_pdu_streaming-subscriber-900-timeline-common.average-tcp-

service-start-time-3}+#{gn_pdu_streaming-subscriber-900-

timeline-common.average-http-setup-time-2:gn_pdu_streaming-

subscriber-900-timeline-common.average-http-setup-time-2}] as

streaming_Time_To_Stream_Start"

Each of these commands declares a Zstore formula to return a computation as if it
was a Zstore field. It should be noted that these formulas end with ‚as
<something>‛, which means that the resulting data will be automatically assigned
to the variable of the same name.

So in order to use the data that was returned ‚as
streaming_Time_To_Stream_Start‛, it is not necessary to use
getVariable(‚streaming_time_to_stream_start‛), we can use
streaming_time_to_stream_start (name should always be lowercase)

4.5.3 Customer query
read (db, subscriberStreamingTable, sql_olap_dimension,

sql_st_cutoff, sql_st_failure, sql_st_timepct,

 sql_st_startfail, sql_st_nonacc, sql_st_timetostart);

Makes the query to the Zstore to retrieve all the fields (formulas) specified above,
from the customer’s table.

Note that due to limitations with the Zstore database, it is recommended when
querying multiple fields to always start with field ‚OLAP.DIMENSION‛.

27

The ‚read‛ keyword used in this way will automatically add to the request the
RANGE KEYJOIN based on the customer Id and the time period.

4.5.4 Customer KPI computing
customer_streaming_qoe = buildStreamingKpis("customer-");

Calls the buildStreamingKpis function, with the prefix ‚customer‛. The function will
use the data returned by the query, and compute a number of KPIs. By convention,
the widgets attached to the customer KPIs all start with ‘customer-‘.

The function returns an overall QoE score, which is assigned to
customer_streaming_qoe. This is a global variable which was declared in the parent
script Config.groovy.

4.5.5 Location query fields
// Location KPIs

location_streaming_qoe = null;

if (cellId != null)

{

 sql_st_cutoff = "[min(100,

100*safediv((1*#{gn_pdu_streaming-cell-900-timeline-

common.count-streaming-failure-count-3:gn_pdu_streaming-cell-

900-timeline-common.count-streaming-failure-count-

3}),1*#{gn_pdu_streaming-cell-900-timeline-common.count-

streaming-session-count-2:gn_pdu_streaming-cell-900-timeline-

common.count-streaming-session-count-2}, 1))] as

streaming_Repro_Cutoff_Ratio"

 sql_st_failure = "[min(100,

100*safediv((1*#{gn_pdu_streaming-cell-900-timeline-

streaming_rebuffering_failure_ratio.count-streaming-failure-

count-1:gn_pdu_streaming-cell-900-timeline-

streaming_rebuffering_failure_ratio.count-streaming-failure-

count-1}), 1*#{gn_pdu_streaming-cell-900-timeline-

common.count-streaming-session-count-2:gn_pdu_streaming-cell-

900-timeline-common.count-streaming-session-count-2}, 1))] as

streaming_Rebuff_Failure_Ratio"

 sql_st_timepct = "[safediv(100*(#{gn_pdu_streaming-cell-

900-timeline-common.average-tcp-rebuffering-time-

1:gn_pdu_streaming-cell-900-timeline-common.average-tcp-

rebuffering-time-1}),#{gn_pdu_streaming-cell-900-timeline-

streaming_rebuffering_time_percentage.average-stream-duration-

1:gn_pdu_streaming-cell-900-timeline-

streaming_rebuffering_time_percentage.average-stream-duration-

1})] as streaming_Rebuff_Time_Pct"

 sql_st_startfail = "[min(100,

100*safediv((1*#{gn_pdu_streaming-cell-900-timeline-

streaming_reproduction_start_failure_ratio.count-streaming-

failure-count-1:gn_pdu_streaming-cell-900-timeline-

streaming_reproduction_start_failure_ratio.count-streaming-

failure-count-1}+1*#{gn_pdu_streaming-cell-900-timeline-

streaming_reproduction_start_failure_ratio.count-streaming-

failure-count-2:gn_pdu_streaming-cell-900-timeline-

streaming_reproduction_start_failure_ratio.count-streaming-

failure-count-2}+1*#{gn_pdu_streaming-cell-900-timeline-

streaming_reproduction_start_failure_ratio.count-streaming-

failure-count-3:gn_pdu_streaming-cell-900-timeline-

streaming_reproduction_start_failure_ratio.count-streaming-

failure-count-3}),1*#{gn_pdu_streaming-cell-900-timeline-

28

common.count-streaming-session-count-1:gn_pdu_streaming-cell-

900-timeline-common.count-streaming-session-count-1}, 1))] as

streaming_Repro_Start_Failure"

 sql_st_nonacc = "[min(100,

100*safediv(1*#{gn_pdu_streaming-cell-900-timeline-

common.count-streaming-failure-count-3:gn_pdu_streaming-cell-

900-timeline-common.count-streaming-failure-count-

3},1*#{gn_pdu_streaming-cell-900-timeline-common.count-

streaming-session-count-1:gn_pdu_streaming-cell-900-timeline-

common.count-streaming-session-count-1}, 1))] as

streaming_Service_Non_Acc"

 sql_st_timetostart = "[#{gn_pdu_streaming-cell-900-

timeline-common.average-tcp-service-start-time-

3:gn_pdu_streaming-cell-900-timeline-common.average-tcp-

service-start-time-3}+#{gn_pdu_streaming-cell-900-timeline-

common.average-http-setup-time-2:gn_pdu_streaming-cell-900-

timeline-common.average-http-setup-time-2}] as

streaming_Time_To_Stream_Start"

Here are the formulas to extract the location KPIs from the Zstore cell table.

It looks very similar to the equivalent formulas used to get back customer KPIs,
except for the fact that these fields would contain the string ‚_pdu_streaming-cell-
900-timeline‛ while the customer fields had the string ‚_pdu_streaming-
subscriber-900-timeline‛.

However, even if the fields used in the formulas are different, the important point is
that the ‚as‛ part assigns the resulting recordsets to the same variable
(streaming_time_to_stream_start). This is how the buildStreamingKpis function
works, by relying on the ‚as variables‛.

The data is read from different fields and different tables, but it is stored in the
same variables, and this is from where the KPIs are computed.

4.5.6 Location query
 readwhere (db, locationStreamingTable, cellId,

sql_olap_dimension, sql_st_cutoff, sql_st_failure,

sql_st_timepct, sql_st_startfail, sql_st_nonacc,

sql_st_timetostart);

The ‚readwhere‛ keyword works in a similar way to ‚read‛. The only difference is an
extra parameter after the table name. Here, cellId.

The syntax is
Readwhere db, table, id, field1… fieldn

It will query all the fields from the Zstore table, by adding a RANGE KEYJOIN based
on the time period, plus the specified id field (where ‚read‛ was automatically using
the customerId in the Range KeyJoin)

4.5.7 Location KPI computing

 location_streaming_qoe = buildStreamingKpis("location-");

Calls the buildStreamingKpis function, with the prefix ‚location-‛. The function
returns an overall QoE score, which is assigned to location_streaming_qoe. This is a
global variable which was declared in the parent script Config.groovy.

4.5.8 Device query fields
// Device KPIs

29

device_streaming_qoe = null;

if (deviceBMO != null)

{

 sql_st_cutoff = "[min(100,

100*safediv((1*#{gn_pdu_streaming-brand_model_os-900-timeline-

common.count-streaming-failure-count-3:gn_pdu_streaming-

brand_model_os-900-timeline-common.count-streaming-failure-

count-3}),1*#{gn_pdu_streaming-brand_model_os-900-timeline-

common.count-streaming-session-count-2:gn_pdu_streaming-

brand_model_os-900-timeline-common.count-streaming-session-

count-2}, 1))] as streaming_Repro_Cutoff_Ratio"

 sql_st_failure = "[min(100,

100*safediv((1*#{gn_pdu_streaming-brand_model_os-900-timeline-

streaming_rebuffering_failure_ratio.count-streaming-failure-

count-1:gn_pdu_streaming-brand_model_os-900-timeline-

streaming_rebuffering_failure_ratio.count-streaming-failure-

count-1}), 1*#{gn_pdu_streaming-brand_model_os-900-timeline-

common.count-streaming-session-count-2:gn_pdu_streaming-

brand_model_os-900-timeline-common.count-streaming-session-

count-2}, 1))] as streaming_Rebuff_Failure_Ratio"

 sql_st_timepct = "[safediv(100*(#{gn_pdu_streaming-

brand_model_os-900-timeline-common.average-tcp-rebuffering-

time-1:gn_pdu_streaming-brand_model_os-900-timeline-

common.average-tcp-rebuffering-time-1}),#{gn_pdu_streaming-

brand_model_os-900-timeline-

streaming_rebuffering_time_percentage.average-stream-duration-

1:gn_pdu_streaming-brand_model_os-900-timeline-

streaming_rebuffering_time_percentage.average-stream-duration-

1})] as streaming_Rebuff_Time_Pct"

 sql_st_startfail = "[min(100,

100*safediv((1*#{gn_pdu_streaming-brand_model_os-900-timeline-

streaming_reproduction_start_failure_ratio.count-streaming-

failure-count-1:gn_pdu_streaming-brand_model_os-900-timeline-

streaming_reproduction_start_failure_ratio.count-streaming-

failure-count-1}+1*#{gn_pdu_streaming-brand_model_os-900-

timeline-streaming_reproduction_start_failure_ratio.count-

streaming-failure-count-2:gn_pdu_streaming-brand_model_os-900-

timeline-streaming_reproduction_start_failure_ratio.count-

streaming-failure-count-2}+1*#{gn_pdu_streaming-

brand_model_os-900-timeline-

streaming_reproduction_start_failure_ratio.count-streaming-

failure-count-3:gn_pdu_streaming-brand_model_os-900-timeline-

streaming_reproduction_start_failure_ratio.count-streaming-

failure-count-3}),1*#{gn_pdu_streaming-brand_model_os-900-

timeline-common.count-streaming-session-count-

1:gn_pdu_streaming-brand_model_os-900-timeline-common.count-

streaming-session-count-1}, 1))] as

streaming_Repro_Start_Failure"

 sql_st_nonacc = "[min(100,

100*safediv(1*#{gn_pdu_streaming-brand_model_os-900-timeline-

common.count-streaming-failure-count-3:gn_pdu_streaming-

brand_model_os-900-timeline-common.count-streaming-failure-

count-3},1*#{gn_pdu_streaming-brand_model_os-900-timeline-

common.count-streaming-session-count-1:gn_pdu_streaming-

brand_model_os-900-timeline-common.count-streaming-session-

count-1}, 1))] as streaming_Service_Non_Acc"

 sql_st_timetostart = "[#{gn_pdu_streaming-brand_model_os-

900-timeline-common.average-tcp-service-start-time-

3:gn_pdu_streaming-brand_model_os-900-timeline-common.average-

tcp-service-start-time-3}+#{gn_pdu_streaming-brand_model_os-

900-timeline-common.average-http-setup-time-

30

2:gn_pdu_streaming-brand_model_os-900-timeline-common.average-

http-setup-time-2}] as streaming_Time_To_Stream_Start"

4.5.9 Device query
 readwhere (db, deviceStreamingTable, deviceBMO,

 sql_olap_dimension, sql_st_cutoff, sql_st_failure,

sql_st_timepct, sql_st_startfail, sql_st_nonacc,

sql_st_timetostart);

This is identical to the location section. The difference is that the table name (and
the table fields)are ‚streaming-brand_model_os‛ instead of ‚streaming-cell‛.

And the id used for the query Range KeyJoin is the Device BMO string
(concatenation of brand, model and os).

4.5.10 Device KPI computing

 device_streaming_qoe = buildStreamingKpis("device-");

Calls the buildStreamingKpis function, with the prefix ‚device-‛. The function
returns an overall QoE score, which is assigned to device_streaming_qoe. This is a
global variable which was declared in the parent script Config.groovy.

4.5.11 KPI computing
if (streaming_repro_start_failure.size() == 0)

{

 return null;

}

Tests the number of records that were returned by the query. If there are no
records returned, there are no KPIs to compute, and the widgets will display the
blue icon that means ‚no data‛.

def streamingReproStartFailure =

avg(streaming_repro_start_failure)

def streamingServiceNonAcc = avg(streaming_service_non_acc)

def streamingRebuffFailureRatio =

avg(streaming_rebuff_failure_ratio)

def streamingReproCutoffRatio =

avg(streaming_repro_cutoff_ratio)

def streamingRebuffTimePct = avg(streaming_rebuff_time_pct)

def streamingTimeToStreamStart =

avg(streaming_time_to_stream_start)

For each KPI, the score is equal to the average of all records returned (for the time
period)

def streamingAcc = 100 - max(0,

 degradation(streamingReproStartFailure, 5),

 degradation(streamingServiceNonAcc, 5)

)

Computes the Accessibility QoE score which is 100%, minus the highest degradation
for the two KPIs considered in this category: Reproduction Start Failure Ratio, and
Service Non-Accessibility. Each KPI is measured against a threshold of 5%.

31

Note that increasing the threshold decreases the degradation score, hence results
in better QoE scores. The thresholds can be adjusted to better reflect the expected
quality of service.

def streamingRet = 100 - max(0,

degradation(streamingRebuffFailureRatio, 5),

 degradation(streamingReproCutoffRatio, 5)

)

Computes the Retainability QoE score which is 100%, minus the highest
degradation for the two KPIs considered in this category: Rebuffering Failure Ratio,
and Reproduction Cut-off Ratio. Each KPI is measured against a threshold of 5%.

 def streamingQual = 100 - max(0,

 degradation(streamingRebuffTimePct, 25),

 degradation(streamingTimeToStreamStart, 5000)

)

 Computes the Quality QoE score which is 100%, minus the highest degradation
for the two KPIs considered in this category: Rebuffering Time Pct (compared to a
threshold of 25%), and Time to Stream Start (compared to a threshold of 5 seconds
or 5000 milli-seconds)

 def streaming = 0.4 * streamingAcc + 0.3 * streamingRet +

0.3 * streamingQual

Computes the overall service score, which is a weighted average of the three
categories, Accessibility, Retainability and Quality.

if (isAdmin) {

 kpi kpiprefix + "streaming", streaming,

printPercent(streaming)

 kpi kpiprefix + "streaming-acc", streamingAcc,

printPercent(streamingAcc)

 kpi kpiprefix + "streaming-repro-start-failure-ratio",

streamingReproStartFailure,

displayKpiDegradationPct(streamingReproStartFailure, 5)

 kpi kpiprefix + "streaming-service-nonaccessibility",

streamingServiceNonAcc,

displayKpiDegradationPct(streamingServiceNonAcc, 5)

 kpi kpiprefix + "streaming-retain", streamingRet,

printPercent(streamingRet)

 kpi kpiprefix + "streaming-rebuff-failure-

ratio",streamingRebuffFailureRatio,

displayKpiDegradationPct(streamingRebuffFailureRatio, 5)

 kpi kpiprefix + "streaming-repro-cutoff-ratio",

streamingReproCutoffRatio,

displayKpiDegradationPct(streamingReproCutoffRatio, 5)

 kpi kpiprefix + "streaming-qual", streamingQual,

printPercent(streamingQual)

 kpi kpiprefix + "streaming-rebuff-time-pct",

streamingRebuffTimePct,

displayKpiDegradationPct(streamingRebuffTimePct, 25)

 kpi kpiprefix + "streaming-time-to-stream-start",

streamingTimeToStreamStart,

displayKpiDegradationSeconds(streamingTimeToStreamStart, 5000)

 }

 else

32

 {

 kpi kpiprefix + "streaming", streaming

 kpi kpiprefix + "streaming-acc", streamingAcc

 kpi kpiprefix + "streaming-repro-start-failure-

ratio", streamingReproStartFailure

 kpi kpiprefix + "streaming-service-

nonaccessibility", streamingServiceNonAcc

 kpi kpiprefix + "streaming-retain", streamingRet

 kpi kpiprefix + "streaming-rebuff-failure-

ratio",streamingRebuffFailureRatio

 kpi kpiprefix + "streaming-repro-cutoff-ratio",

streamingReproCutoffRatio

 kpi kpiprefix + "streaming-qual", streamingQual

 kpi kpiprefix + "streaming-rebuff-time-pct",

streamingRebuffTimePct

 kpi kpiprefix + "streaming-time-to-stream-start",

streamingTimeToStreamStart,

displayKpiDegradationSeconds(streamingTimeToStreamStart, 5000)

 }

Finally, assigns the computed values and QoE scores to the associated KPIs to
update the widgets. If the user has the admin role, the widgets will also display the
percentages.

 return streaming;

Finally, returns the overall score to the parent script.

4.6 Config_filesharing.groovy
This script is similar to the Config_streaming.groovy script described above.

The first part of the script describes the tables and fields for the customer query,
the location query and the device query. Then calls the function that computes all
the KPIs and overall score for the file sharing indicators

4.7 Config_web_browsing.groovy
This script is similar to the Config_streaming.groovy script described above.

The first part of the script describes the tables and fields for the customer query,
the location query and the device query. Then calls the function that computes all
the KPIs and overall score for the web browsing indicators.

4.8 Config_email.groovy
This script is similar to the Config_streaming.groovy script described above.

The main difference is that while there are tables "report.gn_pdu_email-
subscriber-900-timeline" and "report.gn_pdu_email-cell-900-timeline", but there
is no table containing email data per brand_model_os.

As a consequence, device_email_qoe is always returned null.

33

4.9 Config_network.groovy
This script is also similar to the Config_streaming.groovy script described above,
but with a few tweaks.

def subscriberNetworkTable = "report.gn_app-subscriber-900-

timeline"

def subscriberNetworkDnsTable = "report.gn_pdu_dns-subscriber-

900-timeline"

def subscriberNetworkSignalingTable = "report.gn_signaling-

subscriber-900-timeline"

The network KPIs are spread across three different tables. One for the main
network KPIs, one for the DNS metrics, and another one for signaling.

// Customer KPIs

def sql_nt_failure_ratio = "[min(100, 100*safediv(1*#{gn_app-

subscriber-900-timeline-data_call_access_failure_ratio.count-

http-failure-count-2:gn_app-subscriber-900-timeline-

data_call_access_failure_ratio.count-http-failure-count-2},

1*#{gn_app-subscriber-900-timeline-

data_call_access_failure_ratio.count-http-session-count-

1:gn_app-subscriber-900-timeline-

data_call_access_failure_ratio.count-http-session-count-1},

1))] as failure_ratio"

def sql_nt_tcp_rtt = "[(abs(#{gn_app-subscriber-900-timeline-

common.average-tcp-rtt-client-2:gn_app-subscriber-900-timeline-

common.average-tcp-rtt-client-2})+abs(#{gn_app-subscriber-900-

timeline-common.average-tcp-rtt-server-3:gn_app-subscriber-900-

timeline-common.average-tcp-rtt-server-3}))/1000] as tcp_rtt"

def sql_nt_tcp_retransmission_ratio = "[min(100,

100*safediv(1*#{gn_app-subscriber-900-timeline-

tcp_retransmission_ratio.accumulate-tcp-retransmissions-

1:gn_app-subscriber-900-timeline-

tcp_retransmission_ratio.accumulate-tcp-retransmissions-1},

1*(#{gn_app-subscriber-900-timeline-

tcp_retransmission_ratio.accumulate-bearer-packetsup-2:gn_app-

subscriber-900-timeline-tcp_retransmission_ratio.accumulate-

bearer-packetsup-2}+#{gn_app-subscriber-900-timeline-

tcp_retransmission_ratio.accumulate-bearer-packetsdown-

3:gn_app-subscriber-900-timeline-

tcp_retransmission_ratio.accumulate-bearer-packetsdown-3}),

1))] as tcp_retransmission_ratio"

def sql_nt_access_time = "[#{gn_app-subscriber-900-timeline-

common.average-net-latency-1:gn_app-subscriber-900-timeline-

common.average-net-latency-1}+abs(#{gn_app-subscriber-900-

timeline-common.average-tcp-rtt-client-2:gn_app-subscriber-900-

timeline-common.average-tcp-rtt-client-2}+#{gn_app-subscriber-

900-timeline-common.average-tcp-rtt-server-3:gn_app-subscriber-

900-timeline-common.average-tcp-rtt-server-3})/1000] as

access_time"

read (db, subscriberNetworkTable, sql_olap_dimension,

sql_nt_failure_ratio, sql_nt_access_time,

sql_nt_tcp_retransmission_ratio, sql_nt_tcp_rtt

)

This first query will retrieve all the fields we need from the first table.

34

def sql_nt_resolution_failure_ratio = "[min(100,

100*safediv(1*#{gn_pdu_dns-subscriber-900-timeline-

dns_failure_ratio.count-dns-failure-count-1:gn_pdu_dns-

subscriber-900-timeline-dns_failure_ratio.count-dns-failure-

count-1}, 1*#{gn_pdu_dns-subscriber-900-timeline-

dns_failure_ratio.count-dns-resolution-count-2:gn_pdu_dns-

subscriber-900-timeline-dns_failure_ratio.count-dns-resolution-

count-2}, 1))] as resolution_failure_ratio"

def sql_nt_resolution_time = "gn_pdu_dns-subscriber-900-

timeline-dns_resolution_time.average-net-latency-1:gn_pdu_dns-

subscriber-900-timeline-dns_resolution_time.average-net-

latency-1"

read (db, subscriberNetworkDnsTable, sql_nt_resolution_time)

resolution_time = getVariable(sql_nt_resolution_time)

read (db, subscriberNetworkDnsTable, sql_olap_dimension,

sql_nt_resolution_failure_ratio)

Here, we need to retrieve two KPIs from the DNS table. However, if the first one
(resolution failure ratio) is a formula, returned ‚as resolution_failure_ratio ‚, the
second one is a simple field "gn_pdu_dns-subscriber-900-timeline-
dns_resolution_time.average-net-latency-1:gn_pdu_dns-subscriber-900-timeline-
dns_resolution_time.average-net-latency-1.

Because of limitations with the Zstore database, it is not possible to query formulas
and fields in the same query. You can query multiple formulas at once, or multiple
fields at once, but not a mix of both.

This is the reason why we have to make two queries on the DNS table. The first
query is for the field, and the resulting recordset is assigned to variable
‚resolution_time‛. The second query is for the formula.

def sql_nt_pdp_failure_ratio = "[min(100,

100*safediv(1*#{gn_signaling-subscriber-900-timeline-

pdp_creation_failure_ratio.count-gtp-activate-pdp-reject-

1:gn_signaling-subscriber-900-timeline-

pdp_creation_failure_ratio.count-gtp-activate-pdp-reject-

1},1*#{gn_signaling-subscriber-900-timeline-

pdp_creation_failure_ratio.count-gtp-activate-pdp-request-

2:gn_signaling-subscriber-900-timeline-

pdp_creation_failure_ratio.count-gtp-activate-pdp-request-2},

1))] as pdp_failure_ratio"

def sql_nt_pdp_creation_time = "gn_signaling-subscriber-900-

timeline-pdp_creation_time.average-gtp-latency-1:gn_signaling-

subscriber-900-timeline-pdp_creation_time.average-gtp-latency-

1"

def sql_nt_pdp_cutoff_failure_ratio = "[min(100,

100*safediv(1*#{gn_signaling-subscriber-900-timeline-

pdp_cutoff_ratio.count-gtp-deactivate-pdp-downlink-

1:gn_signaling-subscriber-900-timeline-pdp_cutoff_ratio.count-

gtp-deactivate-pdp-downlink-1},1*#{gn_signaling-subscriber-900-

timeline-pdp_cutoff_ratio.count-gtp-deactivate-pdp-all-

2:gn_signaling-subscriber-900-timeline-pdp_cutoff_ratio.count-

gtp-deactivate-pdp-all-2}, 1))] as pdp_cutoff_failure_ratio"

def sql_nt_rat_type = "[1*#{gn_signaling-subscriber-900-

timeline-rat_type_distribution.count-gtp-rat-utran-

1:gn_signaling-subscriber-900-timeline-

rat_type_distribution.count-gtp-rat-utran-1}] as rattype_utran,

[1*#{gn_signaling-subscriber-900-timeline-

rat_type_distribution.count-gtp-rat-geran-2:gn_signaling-

subscriber-900-timeline-rat_type_distribution.count-gtp-rat-

35

geran-2}] as rattype_geran, [1*#{gn_signaling-subscriber-900-

timeline-rat_type_distribution.count-gtp-rat-wlan-

3:gn_signaling-subscriber-900-timeline-

rat_type_distribution.count-gtp-rat-wlan-3}] as rattype_wlan,

[1*#{gn_signaling-subscriber-900-timeline-

rat_type_distribution.count-gtp-rat-gan-4:gn_signaling-

subscriber-900-timeline-rat_type_distribution.count-gtp-rat-

gan-4}] as rattype_gan, [1*#{gn_signaling-subscriber-900-

timeline-rat_type_distribution.count-gtp-rat-hspa-

5:gn_signaling-subscriber-900-timeline-

rat_type_distribution.count-gtp-rat-hspa-5}] as rattype_hspa"

read (db, subscriberNetworkSignalingTable,

sql_nt_pdp_creation_time)

pdp_creation_time = getVariable(sql_nt_pdp_creation_time);

read (db, subscriberNetworkSignalingTable, sql_olap_dimension,

sql_nt_pdp_failure_ratio,

 sql_nt_pdp_cutoff_failure_ratio, sql_nt_rat_type)

Again, we need to make two separate queries on the Signaling table, to get back a
set of formulas, and a single field is a separate query.

customer_network_qoe = buildNetworkKpis("customer-");

The script has executed 5 queries to the Zstore, which have populated a number of
variables. These variables will be used in the ‚buildNetworkKPis‛ function to
compute the KPIs for the network.

We then have the equivalent queries executed on the ‚per cell‛ tables, and ‚per
device‛ tables.

4.10 Icons
The MBBQoE customization mostly uses icons taken from the HP Experience Live
library, which are packaged with the CCD kit.

This icons can be referenced via the path ‚resources/HP_exp-live‛:
icon="resources/HP_exp-

live/img/icons/file_sharing_48.png"

The MBBQoE customization also provides two custom icons, to demonstrate how
the view can be customized. These icons are packaged in the folder
/resources/icons, and can be referenced in the configGUIView.xml through this
path: ‚resources/mbbqoe/‛ :
icon="resources/mbbqoe/File_Sharing_sharing_RGB_gray_48.p

ng"

4.11 Messages
All the labels in the MBBQoE customization can be easily modified, and localized.

/resources/properties/MessagesBundle.properties contains a set of messages, in
the form of key-value pairs.

36

These messages can be used from configGUIView.xml, or from the Config.groovy
script.

In configGUIView.xml, each widget can have a ‚title‛ attribute. This attribute is
matched into the MessageBundle properties file, and if found, the title of the
widget is replaced by the text property. Otherwise, the content of the title attribute
will be used as the widget title.

In Config.groovy (or any other groovy), it is possible to use the ‚l10n‛ keyword to
search for any label in the messages file.

For instance:
String displayKpiDegradationSeconds(value, threshold)

{

 if (value == null) return "";

 def deg = degradation(value, threshold);

 return concat(printSeconds(value),

 " (", l10n("threshold"), ":",

printSeconds(threshold), ") ",

 l10n("degradation"), ":", printPercent(deg),

" ",

 l10n("QoE"), ":", printPercent(100 - deg)

)

}

In addition to providing an easy way to isolate and update labels, the
MessageBundle mechanism allows to easily localize the client’s view.

If the user accesses the dashboard with a ‚locale‛ parameter, CCD will try to find a
properties file named MessageBundle_<locale>.properties.

If this file exists, then it will get the labels from this localized file.

We provide in the customization kit an example of a French translation of the
custom.

